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Abstract

This paper presents a finite-element model for a flexible hub–beam system with a tip mass. Both viscous
damping and air drag force are introduced into this model. The complete coupling between the system rigid
and flexible degrees of freedom is allowed since the start of the formulation and developing the system
kinematic variables. Based on deformation theory and geometric constraints, a second order
approximation for the displacement field is proposed and the dynamic stiffening is accounted for.
Hamilton’s principle is utilized in deriving the equations of motion. The corresponding dynamics models of
the tip mass and damping forces are developed in a consistent manner through formulating their energy
expressions and applying Hamilton’s principle. The finite element method is employed for spatial
discretization due to its versatility, high accuracy and convergence. Numerical simulations show that the
second order term in deformation field can have significant effect on dynamics behavior of flexible
multibody systems. It is also shown that the traditional linear model cannot account for dynamic stiffening
and may lead to erroneous result in some high-speed systems because the deformation field commonly used
in structural dynamics is straight employed in this model. In contrast, the developed model (CCM) based
on the second order deformation field can predict valid results. The effects of tip mass and damping on
dynamics behavior of the hub–beam system are also discussed.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Flexible multibody dynamics emerged as a new field in the early 1970s, and it had sparked the
interest of many investigators in the mechanical engineering community, as well as in the control
engineering area. Important applications of this research activity involve understanding and
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control of the behaviors of flexible structures, such as light robotic manipulator, satellite solar
array and space vehicles.
The hybrid co-ordinate approach [1–3] is currently the most widely used method for the

dynamics simulation of complex flexible multibody systems. In this approach, the coupling
between the rigid-body motion and the elastic deformations is taken into consideration and two
sets of co-ordinates are employed to describe the configuration of the deformable bodies: one set
describes the location and orientation of a selected body co-ordinate system, while the second set
describes the deformation of the body with respect to its co-ordinate system. The deformation
field commonly used in structural dynamics is straight adopted to determine the kinematics of
flexible components in the system. Therefore, this approach does not account for modal
characteristic changes due to reference rotational speeds of flexible components. As pointed out in
Ref. [4], the traditional deformation field fails to produce an elastic rotation matrix that is
complete to second order in the deformation variables.
The flexible hub–beam system is a typical multibody system and has been widely studied by

numerous researchers. Kane et al. [5] investigated the beam undergoing large overall motions and
reported that the conventional hybrid co-ordinate approach could lead to erroneous results such
as prediction of dynamic softening of a rotating structure when dynamic stiffening is to be
expected. Subsequently, many valuable researches on rotating beams had been done to modify the
conventional hybrid co-ordinate approach in order to account for dynamic stiffening. Banerjee
and Dickens [6] captured the dynamic stiffening terms and incorporated them into the system
equations of motion by geometric constraints between transverse and longitudinal deflections in
beams or plates. Liu and Liew [7], Wu and Haug [8] employ a system of substructures, where a
flexible body is subdivided into many small sub-bodies (substructures or finite elements) with
convected co-ordinate frames. Ider [9], Mayo and Dominguez [10] computed the dynamics
stiffness matrix of a beam from the strain energy term including the non-linear strain–
displacement relationship. Most of these investigations were concerned with the rotating beams or
plates undergoing a prescribed large overall motion, wherein the effect of large overall motion of
the reference frame on elastic deformation was considered but at the same time the beam’s elastic
deformation could not influence the large overall motion of the reference frame because the large
over motion is known a priori. So the system reference frame equation of motion was not shown
in the model with the associated effects from the system elastic deformations.
Chapnik et al. [11] reported a dynamic model for a rotating flexible arm impacted on its tip.

They utilized the finite element method (FEM) in discretizing the beam reference motion and the
beam elastic deformations. Yigit et al. [12] performed a study of the flexural motion of a radially
rotating beam attached to a rotating base. The model is based on a generalized co-ordinate-shape
function description. The study showed that for comparable inertia of the rigid shaft and of the
flexible body, the uncoupled model might give incorrect results. But in this literature the effects of
dynamic stiffening induced by the centrifugal force were not considered.
The present work is devoted towards establishing a finite-element model for a flexible hub–

beam system, carrying a payload on its tip. Both viscous damping and air drag force are
introduced into this model. The complete coupling between rigid and flexible degrees of freedom
the system is allowed since the start of the formulation and developing the system kinematic
variables. Based on deformation theory and geometric constraints, a second order approximation
for the displacement field is proposed and the dynamic stiffening is accounted for. Hamilton’s
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principle is utilized in deriving the equation motion. The large overall motion of the beam
reference frame is not prescribed and is certainly affected by elastic deformation since the motion
of the hub is unknown a priori. The corresponding dynamics models of the tip mass and damping
forces are developed in a consistent manner through formulating their energy expressions and
applying Hamilton’s principle. The FEM is employed for spatial discretization due to its versatility,
high accuracy and convergence. Numerical simulations and comparisons with traditional hybrid co-
ordinate approach are presented to demonstrate the validity of the developed model. The effects of
tip mass and damping on dynamics behavior of the hub–beam system are also discussed.

2. Kinematics description

A schematic diagram of a flexible hub–beam system is shown in Fig. 1. The hub is assumed to
be rigid and the flexible beam AB is attached radially to the hub at the point A: The beam has a
slender shape so that shear and rotary inertia effects are neglected. The motion of the beam is
confined to the horizontal plane and gravity is neglected and a tip mass is considered to be
concentrated near the free end B of the beam. The rotary inertia of the tip mass is neglected. Two
co-ordinate systems are necessary to describe the beam dynamics: an inertial frame x0y0 and a
reference frame xy attached to the hub such that its x-axis is directed along the undeformed
configuration of the beam. The beam is described using n finite elements. Each finite element has
its own co-ordinate system %x %y attached to its first node i in its undeformed configuration. The
position of the ith element co-ordinate system is defined by the position of the first node xi in the
xy reference frame.
To describe the motion of the beam in the inertia frame, introduce a differential element P0Q0

on the ith element. Point P0 is located at a distance x along the undeformed centroidal axis from
the origin of the reference frame. Let %x denote the axial position of point P0 measured relative to
the %x %y element co-ordinate system. Then the position vector of point P0 with respect to the
reference frame xy can be represented as

qP ¼ ðx 0 ÞT ¼ ðxi þ %x 0 ÞT: ð1Þ
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Fig. 1. Schematic diagram of a flexible hub–beam system.
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After deformation, the differential element P0Q0 lies at a new position which is labelled PQ.
The global position vector of point P can be written as

rP ¼ rA þ AðrP þ uPÞ; ð2Þ

where rA is the position vector of the origin of the reference frame with respect to the inertia
frame, uP is the deformation vector and A is the rotational transformation matrix.
The velocity and acceleration vectors of point P can be obtained by differentiating Eq. (2) as

follows:

’r P ¼ ’rA þ ’AðrP þ uPÞ þ A’uP; ð3Þ

.r P ¼ .rA � ’y2AðrP þ uPÞ þ 2’y
dA

dy
’uP þ A.uP þ .y

dA

dy
ðrP þ uPÞ: ð4Þ

The deformation vector uP can be written as

uP ¼ ð u1 u2 Þ
T; ð5Þ

where u1 and u2 are the Cartesian distance measure of the beam deformation in the reference
frame. After deformation, the arc-length of the differential element PQ is

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

@u1

@x

� �2

þ
@u2

@x

� �2
s

dx: ð6Þ

Using Taylor series expansion expression for radication, up to the second order terms of the
deformation variables, ds can be written as

ds ¼ 1þ
@u1

@x
þ

1

2

@u2

@x

� �2
" #

dx: ð7Þ

By integrating Eq. (7), the distance along the deformed elastic axis from point A to point P is

z{
AP ¼

Z x

0

1þ
@u1

@x
þ
1

2

@u2

@x

� �2
" #

dx: ð8Þ

Two variables are used to describe the deformation of point P: w1; the pure axial deformation
of the centroidal axis and w2; the transverse deformation in the direction of the y-axis of the
reference frame. For a slender beam, the deformation w2 is usually several orders of magnitude
larger than the deformation w1: So one can obtain u2 ¼ w2: The arc-length

z{
AP may also be

expressed as
z{

AP ¼ x þ w1: ð9Þ

Using Eqs. (8) and (9), one obtains

u1 ¼ w1 þ wc; ð10Þ

where wc is a second order term

wc ¼ �
1

2

Z x

0

@w2

@x

� �2

dx: ð11Þ
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It is clear from Eqs. (10) and (11) that the axial displacement of point P consists of two parts:
the actual axial deformation of the point denoted as w1 and the axial displacement of the point
due to the inextensibility assumption, or the foreshortening effect, represented by wc. It should be
noted that the second order tem wc is not included in the traditional linear deformation field but
this term can have a significant impact on the beam’s dynamic equations when it undergoes large
rigid-body motion.
In view of slender beam and x ¼ xi þ %x; substituting Eqs. (10) and (11) into Eq. (5) yields

uP ¼
w1 �

Z xiþ %x

0

1

2

@w2

@x

� �2

dx

w2

2
64

3
75: ð12Þ

The FEM will be utilized to discretize the elastic beam. In the FEM, the deformations are
usually represented in terms of the nodal degrees of freedom. This can be expressed as

w1 ¼ N1ð %xÞqðtÞ; w2 ¼ N2ð %xÞqðtÞ; ð13Þ

where N1ð %xÞ and N2ð %xÞ are spatial-dependent matrices of the shape functions, and q(t) is the vector
of nodal degrees of freedom which are time dependent.
Let li be the length of the ith element. Substituting Eq. (13) into Eq. (12) yields the deformation

displacement vector of point P in the ith element

uP ¼
N1q� 1

2
qTSði; %xÞq

N2q

" #
; ð14Þ

where

Sði; %xÞ ¼
Z %x

0

@N2

@ %x

T

�
@N2

@ %x
d %x þ

Xi�1

j¼1

Z lj

0

@N2

@ %x

T

�
@N2

@ %x
d %x: ð15Þ

It is easy to see that Sði; %xÞ is a symmetrical and non-negative-definite matrix. The second order
deformation field for a beam has been established as Eq. (15). In case of the second order term
Sði; %xÞ being neglected, Eq. (14) describes the traditional deformation field in the structural
dynamics.

3. Dynamics equations

Let r denotes the mass per unit length for a typical element i, Then the system kinetic energy

T ¼ TH þ TL þ
1

2

Xn

i¼1

Z li

0

r’rTP ’rP dx; ð16Þ

where TH and TL are the kinetic energy of the hub and of the tip mass, respectively.
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By using Euler–Bernoulli theory, the potential energy is given by

P ¼
1

2

Z li

0

EAr

@w1

@x

� �2

dx þ
1

2

Z li

0

EI
@2w2

@x2

� �2

dx; ð17Þ

in which E is Young’s modulus, Ar is the cross-sectional area and I is the area moment of inertia.

3.1. Equations of motion at the element level

To produce equations of motion in a compact form, the following element coefficients and
matrices are introduced:

Ji ¼
Z li

0

rðrA þ xi þ %xÞ2 d %x; ð18Þ

Mi ¼
Z li

0

rðNT
1N1 þNT

2N2Þ d %x; ð19Þ

Ki ¼
Z li

0

EAr
@N1

@ %x

� �T @N1

@ %x

� �
þ EI

@2N2

@ %x2

� �T
@2N2

@ %x2

� �" #
d %x; ð20Þ

U0k ¼
Z li

0

rNk d %x; k ¼ 1; 2; U1k ¼
Z li

0

rðxi þ %xÞNk d %x; k ¼ 1; 2; ð21Þ

D0 ¼
Z li

0

rSði; %xÞ d %x; D1 ¼
Z li

0

ðxi þ %xÞrSði; %xÞ d %x; ð22Þ

R ¼
Z li

0

rNT
1N2 d %x; Gi ¼ RT � R; ð23Þ

where Ji is the moment of inertia of ith element about the hub center, the matrix Mi is the
consistent mass matrix that usually appears in the structural dynamics finite element formulations
and Ki is the conventional stiffness matrix. The matrices R and Gi result from the gyroscopic
effects, while the matrices D0 and D1 result from the second order term of the deformation field.
Both matrices D0 and D1 are non-negative definite because Sði; %xÞ is a non-negative definite
matrix.
By applying Hamilton’s principle to Eqs. (16) and (17), the equations of motion at the element

level can be written in compact form as

Myy Myq

Mqy Mqq

" #
.y

.q

" #
þ 2’y

0 0

0 Gi

" #
’y

’q

" #
þ C

’y

’q

" #
þ

0 0

0 Kqq

" #
y

q

" #
¼

Qy

Qq

" #
þ

Fy

Fq

" #
; ð24Þ

where

Myy ¼ Ji þ qTMiqþ 2ðrAU01 þU11Þq� qTðrAD0 þD1Þq; ð25Þ

Myq ¼MT
qy ¼ rAU02 þU12 þ qTGi; Mqq ¼Mi; ð26Þ
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Kqq ¼ Ki � ’y2Mi þ ’y2ðrAD0 þD1Þ; ð27Þ

Qy ¼ �2’y qTMi ’qþ ðrAU01 þU11Þ’q� qTðrAD0 þD1Þ’q
h i

; ð28Þ

Qq ¼ ’y2ðrAU
T
01 þU

T
11Þ: ð29Þ

In addition, Fy represents the rotational external torque and the matrix Fq is the vector of nodal
external forces. The matrix C is damping matrix that will be discussed later. The underlined terms
in Eqs. (25), (27) and (28) are the terms resulting from the second order deformation field.
In Eq. (24), one can recognize the non-linear inertia coupling between the rigid-body motion

and the elastic deformations. The entryMyy is the rotational inertia of the system, andMqq is the
beam generalized elastic mass matrix. The entry Myq represents the non-linear inertia coupling
between the motion of the reference frame and the elastic deformations. The matrix Kqq is the
generalized elastic stiffness matrix that is shown to be affected by both the motion of the reference
frame and the elastic deformations. The effects can be visualized to be both stiffening and
softening.

3.2. Tip mass dynamics

The tip mass, as shown in Fig. 1, is located at a distance Lt along the undeformed centroidal
axis from the origin of the reference frame xy. It is considered to have a mass mt and attached to
the nth element. The position of the nth element co-ordinate system in the xy reference frame is xn;
and g ¼ Lt � xn is the axial position of the tip mass measured relative to the nth element co-
ordinate system in the undeformed configuration. Then the position vector of the tip mass with
respect to the inertial frame x0y0 can be represented as

rL ¼ rA þ AðqL þ uLÞ; ð30Þ

where qL=(Lt 0)T is the position vector of the tip mass in the reference frame xy in the
undeformed configuration, and uL is the elastic displacement vector of the tip mass.
The acceleration vector of the tip mass is obtained by differentiating Eq. (30) two times and

found to be in the form

.r L ¼ .rA � ’y2AðrL þ uLÞ þ 2’y
dA

dy
’uL þ A.uL þ .y

dA

dy
ðrL þ uLÞ: ð31Þ

The tip mass contributes to the dynamics of the system through its kinetic energy, and only the
translational kinetic energy of the tip mass is taken into account because the rotary inertia of the
tip mass is neglected. The variation of the translational kinetic energy of the tip mass can be
expressed as

dTL ¼ �mtdrTL.rL: ð32Þ

The contribution of the tip mass to the dynamics of the system can also be included by applying
Hamilton’s principle to Eq. (32). After differentiation and algebraic manipulations, the equations
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can be represented by the following matrix form:

ML
yy ML

yq

ML
qy ML

qq

" #
.y

.q

" #
þ 2’y

0 0

0 GL

" #
’y

’q

" #
þ

0 0

0 KL
qq

" #
y

q

" #
¼

QL
y

QL
q

" #
; ð33Þ

where the coefficients and matrices are shown in the appendix.

3.3. Equation of the hub

The contribution of the hub to the dynamics of the system can be represented as

JH 0

0 0

" #
.y

.q

" #
¼

0

0

" #
; ð34Þ

where JH is the rotary inertia of the hub.

3.4. Damping

It is realized that the presence or absence of damping has a dramatic effect on dynamics of some
modern flexible structures, particularly for large initial displacements with high velocities. So the
effects of atmosphere and viscous structural damping are taken into account in the present model
of hub–beam system, and this model may be useful for future experiment. We consider three kinds
of damping: Rayleigh beam damping, viscous hub friction and air drag forces.
Rayleigh’s proportional damping in the beam material has been assumed. The structural

damping matrix of element i can be expressed as

CS ¼ b1Mi þ b2Ki; ð35Þ

where b1 and b2 are mass damping coefficient and stiffness damping coefficient, respectively. The
matrix Mi is the consistent mass matrix and Ki is the conventional stiffness matrix, as shown in
Eqs. (19) and (20).
When a thin plate rotates and vibrates transversely in air, the air drag force can cause free

vibrations to decay. As reported in Refs. [13,14], one must consider two types of drag forces,
namely one proportional to the instantaneous velocity and the other proportional to the square of
the instantaneous velocity. Based on these reports, the air drag forces per unit length on the beam
slewing about the hub center axis can be written as

FA1 ¼ �b1’rP ð36Þ

and

FA2 ¼ �b2’rP ’rPj j; ð37Þ

where b1 and b2 are two coefficients.
By using Eqs. (3) and (36), the virtual work produced by the linear drag force FA1 acting on ith

element has the form

dWA1 ¼ �b1

Z li

0

drTP ½’rA þ ’AðrP þ uPÞ þ A’uP	 d %x: ð38Þ
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By utilizing Hamilton’s principle, the contribution of the drag force proportional to the velocity to
the dynamics of the system can be represented by the following damping matrix:

CA1 ¼ �
b1
r

Myy Myq

Mqy Mqq

" #
: ð39Þ

It is clear that this damping matrix due to the drag force proportional to the velocity has the
same expression as the generalized mass matrix in Eq. (24) except different coefficients.
By substituting Eq. (3) into Eq. (37), the drag force proportional to the velocity squared can be

rewritten as

FA2 ¼ �b2½’rA þ ’AðrP þ uPÞ þ A’uP	 ’rA þ ’ArP þ ’AuP þ A’uP

�� ��: ð40Þ

The expression of this drag force is very complicated, and it would lead to non-linear equations
of motion that are difficult to solve analytically and even numerically; thus some simplification is
helpful. For the case of a fast slew maneuver of the flexible beam, the instantaneous velocity
’rA þ ’ArP due to the hub angular velocity is usually one order of magnitude higher than the
instantaneous velocity ’AuP þ A’uP due to the elastic deformation [14]. Therefore, Eq. (40) can be
reduced to

FA2 ¼ �b2½’rA þ ’AðrP þ uPÞ þ A’uP	 ’rA þ ’ArP

�� ��: ð41Þ

Similar to deriving the matrix CA1, the contribution of the drag force FA2 to the dynamics of the
system can also be represented by a damping matrix

CA2 ¼ �
b2 ’y sign ð’yÞ

r
Cb1 Cb2

Cb3 Cb4

" #
; ð42Þ

where

Cb1 ¼
Z li

0

rðrA þ xi þ %xÞ3 d %x; ð43Þ

Cb2 ¼ 2rAU12 þ r2AU02 þ
Z li

0

rðxi þ %xÞ2N2 d %x; ð44Þ

Cb3 ¼ CT
b2; Cb4 ¼ rAMi þ

Z li

0

rðxi þ %xÞNT
2N2 d %x: ð45Þ

After including the effect of viscous hub friction, the global damping matrix has the form

C ¼
CH 0

0 b1Mi þ b2Ki

" #
þ

b1
r

Myy Myq

Mqy Mqq

" #
þ

b2 ’y sign ð’yÞ
r

Cb1 Cb2

Cb3 Cb4

" #
; ð46Þ

where CH is viscous friction coefficient. Substituting Eq. (46) into Eq. (24) yields the equations of
motion including the effects of damping at the element level.
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3.5. Equations of motion of the whole system

Now, the global equations of motion of the hub–beam system with tip mass can be established
by the conventional finite element assembling procedure of the elemental coefficient matrices. The
entries of Eqs. (33) and (34) are to be added to the corresponding entries of the generalized
matrices in the equation of motion of the whole system.
Two different dynamics models are developed in order to examine the effect of the proposed second

order deformation field on the response of the hub–beam system. In the first model, called consistent
complete model (CCM), the effect of second order deformation field is included. The CCM is just the
proposed model above. In the second model, called traditional linear model (TLM), the effect of
second order deformation field is neglected, so one has Sði; %xÞ ¼ 0 and D0 ¼ D1 ¼ 0 in Eq. (22).
Both models are based FEM, since FEM has some advantages compared to the mode method.

It is known that large overall motion can affect the vibration modal frequencies and shape
functions of the beam. Therefore, the modal characteristics of the rotating beam are some
different from that of the non-rotating beam. At the same time, selection of deformation mode is
important for the accuracy of the solution. In general, more than three modes are used to
discretize the governing equations in order to maintain enough accuracy of numerical results. If
FEM is adopted to build the equation of motion, there is no need to select modal shape functions
because the beam has been divided into some small elements and interpolation function is used to
discretize the beam element. In addition, very accurate solutions are obtained with a well-known
guarantee of convergence [15].

4. Numerical simulation

4.1. Maneuver of a hub–beam system

Consider first a hub–beam system, as shown in Fig. 1. A prescribed torque tðtÞ pulse applied to
the hub was chosen as an input to the system, and it has the following profile:

tðtÞ ¼

tP; 0ptpt1;

0; t2ptpt3;

t1; �tP:

8><
>: ð47Þ

The tip mass is assumed to be zero and the effects of damping are neglected. The objective is to
determine the time history response of the system. (This model was studied by Yigit et al. [12].)
The values of parameters involved are the same as in Ref. [12] and are as follows: beam length
L ¼ 0:5m, r ¼ 0:0858 kg/m, EI ¼ 5:50 Nm2, JH ¼ 7:845
 10�4 kgm2, mt ¼ 0; rA ¼ 0:05m,
tP ¼ 1:0Nm, t1 ¼ 0:05 s, t2 ¼ 0:1 s, t3 ¼ 0:15 s.
Figs. 2 and 3 show the results of the simulations using the two models (CCM, TLM) discussed

in the preceding sections. It is clear that no substantial differences are found between the result
(tip deflection of the beam or angular velocity of the hub) of the CCM and TLM, and the results
of CCM (and TLM) agree with those presented in Ref. [12]. It should be noted that Yigit et al. [12]
obtained the results by using assumed mode method (Galerkin method) and they found that using
only a one mode approximation can also produce perfect solutions for the case mt ¼ 0:
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With same parameters as above except mt ¼ 0:015 kg, the simulations are performed again.
Fig. 4 shows the beam tip deflection obtained by using the CCM. When compared to the case
without tip mass in Fig. 2, it can be seen that the tip mass has the effect of decreasing the
frequency of oscillations, and increasing the amplitude in the period of the first pulse (0–0.5 s).
Fig. 5 shows the resulting tip deflection obtained by using assumed mode method. Here,
admissible functions are chosen as the mode shapes for the non-rotating cantilever beam with a
tip mass. If compared to Fig. 4, it is clear that using only a one mode approximation leads to an
erroneous result: the first order vibration frequency of the beam is much higher than that obtained
by FEM. If the first three modes from a clamped-mass boundary condition are used for numerical
simulation, the resulting frequency is coincident with the frequency obtained by FEM. For more
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Fig. 2. Beam tip deflection (mt ¼ 0).

Fig. 3. Angular velocity of the hub (mt ¼ 0).
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accurate results, more than three modes must be used, or one can chose other complex global or
system modes, which is seriously dependent on personal experience.
For this example, accurate results can be predicted with the traditional linear deformation field

(CCM and TLM). This is not always the case, as will be demonstrated in the second example.

4.2. Free vibration of a hub–beam system

In this example, both the tip mass and the damping are taken into account, but neither external
force nor torque was applied to the hub–beam system as shown in Fig. 1. A uniform beam made
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Fig. 4. Beam tip deflection obtained by FEM (mt ¼ 0:015 kg).

Fig. 5. Beam tip deflection obtained by assumed mode method (mt ¼ 0:015 kg).
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of aluminum with the dimensions and material properties given in Table 1 is used in the present
numerical simulation. The fundamental frequency of this beam for clamped–free condition is
0.548Hz. A tip mass mt is concentrated in the free end of the beam.
The beam is given an initial tip deflection of 0.229m. The angular position of the hub is set to

zero at t ¼ 0; and the angular velocity of the hub is initially given by 3.473 rad/s. The time
histories of the resulting tip deflection of the beam by using the two models (CCM, TLM) are
shown in Fig. 6. The results of the beam tip deflection when all effects of damping are neglected
are also shown in Fig. 6. It can be seen that the important difference has occurred between the
beam tip deflection by using the CCM (solid line) and that by using the TLM (dashed line). Due to
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Table 1

Summary of model parameters

Property Symbol Value

Beam length L 1.80m

Mass per unit length r 0.69167 kg/m

Cross-section Ar 0.00025m2

Young’s modulus E 6.8952
 1010N/m2

Beam area moment of inertia I 1.3021
 10�10m4

Hub moment of inertia JH 1.16 kgm2

Tip mass mt 0.09 kg

Hub radius (distance from point O to point A) rA 0.121m

Mass damping coefficient b1 0.056

Stiffness damping coefficient b2 0

Coefficient of air drag force b1 0.3

Coefficient of air drag force b2 0

Viscous friction coefficient CH 0

Fig. 6. Beam tip deflection.
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the effects of damping the tip deflection of the beam using the CCM has a trend of decaying since
the start of simulation, and the maximal tip deflection is the initial tip deflection 0.229m. To gain
more information about the resulting dynamics behavior of the system, the FFT spectrum analysis
is employed. It is found that the waveform of the beam tip deflection using the CCM is dominated
by a fundamental mode (0.879Hz) with a small third mode component (10.16Hz) superimposed on
it. This fundamental frequency (0.879Hz) is 60% higher than the fundamental frequency for
clamped–free condition (0.548Hz), and this phenomenon of frequency increase can also be seen in
Ref. [12]. Compared to the resulting tip deflection using the CCM, the TLM shows a substantially
different behavior: at first the beam tip deflection in the TLM increases to a large deflection about
1.26m, and then tends to oscillate with decaying. It is noteworthy to mention that the amplitude of
the resulting tip deflection using the TLM is much larger than that using the CCM, and even the
resulting tip deflection using the TLM has exceeded the assumption of small deformation. At the
same time, the TLM has lower fundamental frequency (0.730Hz) than the CCM (0.879Hz).
The dot line and dash–dot line in Fig. 6 represent the tip deflections of the beam obtained using

(the two models) CCM and TLM without damping, respectively. When the effects of damping are
neglected, the CCM has a higher fundamental frequency (0.988Hz). But the tip deflection of the
beam obtained using the TLM without damping indicates a cataclysmic instability of the motion.
Physically, it seems clear that this system does not have instabilities and so it is the modelling
(TLM) that is incorrect. This can be explained from the stiffness matrix in Eq. (27). Because the
second order term in deformation field is not included, the generalized elastic stiffness matrix in
the TLM is expressed as Kqq ¼ Ki � ’y2Mi: From this expression, it is recognized that the increase
of the hub angular velocity ’y could cause a ‘‘softening’’ effect on the elastic stiffness matrix Kqq. If
the angular velocity of the hub is higher than a critical value (i.e., the fundamental frequency of
the beam), this elastic stiffness matrix may be negative definite and the system becomes unstable.
On the other hand, the generalized elastic stiffness matrix in the CCM is represented as Kqq ¼
Ki � ’y2Mi þ ’y2ðrAD0 þD1Þ; in which the inclusion of the non-negative definite matrix ’y2ðrAD0 þ
D1Þ can fully counteract the effect of softening mentioned above. (It is well known that high-speed
rotating can cause the so-called ‘‘dynamic stiffening’’ instead of ‘‘softening’’.) So the CCM leads
to a well-behaved response as expected. For the TLM, the angular velocity ’y of the hub decreases
due to the air damping and the effect of softening by �’y2Mi becomes more and more weak. Hence
the system stiffness rebounds gradually. Eventually, the responses of the TLM tend to oscillate
with decaying, as shown in Fig. 6 (response of the beam tip deflection) and Fig. 7 (response of the
hub angular velocity). However, the system stiffness of the TLM is still ‘‘softer’’ than that of the
CCM. So the responses of the TLM show a lower-frequency but larger-amplitude characteristic.
Although these results from the TLM with damping are numerically stable, they are still incorrect.
From the above, it is seen that the second order term in deformation field can have significant
effect on dynamics behavior of flexible multibody systems in high-speed case, and the developed
model (CCM) based on the second order deformation field can predict valid results.

5. Conclusions

In this paper, a finite-element model for a flexible hub–beam system carrying a tip mass is
presented. Both viscous damping and air drag force are introduced into this model. Based on
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deformation theory and geometric constraints, a second order approximation for the
displacement field is proposed and the dynamic stiffening is accounted for. Since the motion of
the hub is unknown a priori, the large overall motion of the reference frame of the beam is not
prescribed but is influenced by elastic vibration. The corresponding dynamic models of the tip
mass and damping forces are developed in a consistent manner through formulating the their
energy expressions and applying Hamilton’s principle. The FEM is used for spatial discretization
due to its versatility, high accuracy and convergence. Numerical simulations and comparisons
with traditional hybrid co-ordinate approach are presented to demonstrate the validity of the
developed model. It is shown that the traditional hybrid co-ordinate approach cannot account for
dynamic stiffening and may lead to erroneous result in some high-speed systems because of the
softening effect on the elastic stiffness matrix. It is also seen that the damping can weaken this
effect of softening. In future research, experimental investigations on such a system are needed.
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Appendix

The coefficients and matrices in the motion equation (33) of the tip mass are given as follows:

ML
yy ¼mt½ðrA þ LtÞ

2 þ qTNT
1 ðgÞN1ðgÞqþ qTNT

2 ðgÞN2ðgÞq

þ 2ðrA þ LtÞN1ðgÞq� ðrA þ LtÞqTSðn; gÞq	; ðA:1Þ
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Fig. 7. Angular velocity of the hub.
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ML
yq ¼ ðML

qyÞ
T ¼ mt½ðrA þ LtÞN2ðgÞ þ qTNT

1 ðgÞN2ðgÞ � qTNT
2 ðgÞN1ðgÞ	; ðA:2Þ

ML
qq ¼ mt½NT

1 ðgÞN1ðgÞ þNT
2 ðgÞN2ðgÞ	; ðA:3Þ

KL
qq ¼ �mt

’y2½NT
1 ðgÞN1ðgÞ þNT

2 ðgÞN2ðgÞ	 þ mt
’y2ðrA þ LtÞSðn; gÞ; ðA:4Þ

GL ¼ mt½NT
2 ðgÞN1ðgÞ �NT

1 ðgÞN2ðgÞ	; ðA:5Þ

QL
y ¼ � 2mt

’yfqTNT
1 ðgÞN1ðgÞ’qþ qTNT

2 ðgÞN2ðgÞ’q

þ ðrA þ LtÞ½N1ðgÞ’q� qTSðn; gÞ’q	g; ðA:6Þ

QL
q ¼ mt

’y2ðrA þ LtÞNT
1 ðgÞ: ðA:7Þ
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